Source code for balance.weighting_methods.poststratify

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# pyre-unsafe

from __future__ import absolute_import, division, print_function, unicode_literals

import logging
from typing import Dict, List, Optional, Union

import pandas as pd

from balance import adjustment as balance_adjustment, util as balance_util

logger: logging.Logger = logging.getLogger(__package__)


# TODO: Add tests for all arguments of function
# TODO: Add argument for na_action
[docs] def poststratify( sample_df: pd.DataFrame, sample_weights: pd.Series, target_df: pd.DataFrame, target_weights: pd.Series, variables: Optional[List[str]] = None, transformations: str = "default", transformations_drop: bool = True, *args, **kwargs, ) -> Dict[str, Union[pd.Series, Dict[str, str]]]: """Perform cell-based post-stratification. The output weights take into account the design weights and the post-stratification weights. Reference: https://docs.wfp.org/api/documents/WFP-0000121326/download/ Args: sample_df (pd.DataFrame): a dataframe representing the sample sample_weights (pd.Series): design weights for sample target_df (pd.DataFrame): a dataframe representing the target target_weights (pd.Series): design weights for target variables (Optional[List[str]], optional): list of variables to include in the model. If None all joint variables of sample_df and target_df are used transformations (str, optional): what transformations to apply to data before fitting the model. Default is "default" (see apply_transformations function) transformations_drop (bool, optional): whether the function should drop non-transformed variables. Default is True. Raises: ValueError: _description_ ValueError: _description_ Returns: Dict[str, Union[pd.Series, Dict[str, str]]]: weight (pd.Series): final weights (sum up to target's sum of weights) model (dict): method of adjustment Dict shape: { "weight": w, "model": {"method": "poststratify"}, } """ balance_util._check_weighting_methods_input(sample_df, sample_weights, "sample") balance_util._check_weighting_methods_input(target_df, target_weights, "target") if ("weight" in sample_df.columns.values) or ("weight" in target_df.columns.values): raise ValueError( "weight can't be a name of a column in sample or target when applying poststratify" ) variables = balance_util.choose_variables(sample_df, target_df, variables=variables) logger.debug(f"Join variables for sample and target: {variables}") sample_df = sample_df.loc[:, variables] target_df = target_df.loc[:, variables] sample_df, target_df = balance_adjustment.apply_transformations( (sample_df, target_df), transformations=transformations, drop=transformations_drop, ) variables = list(sample_df.columns) logger.debug(f"Final variables in the model after transformations: {variables}") target_df = target_df.assign(weight=target_weights) target_cell_props = target_df.groupby(list(variables))["weight"].sum() sample_df = sample_df.assign(design_weight=sample_weights) sample_cell_props = sample_df.groupby(list(variables))["design_weight"].sum() combined = pd.merge( target_cell_props, sample_cell_props, right_index=True, left_index=True, how="outer", ) # check that all combinations of cells in sample_df are also in target_df if any(combined["weight"].isna()): raise ValueError("all combinations of cells in sample_df must be in target_df") combined["weight"] = combined["weight"] / combined["design_weight"] sample_df = sample_df.join(combined["weight"], on=variables) w = sample_df.weight * sample_df.design_weight return { "weight": w, "model": {"method": "poststratify"}, }